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Overview of current work

Some final work on shape metrics ala March workshop.

Whole image metrics: geomeasures on the image

Warping: an update

Formation of “nuance” working group
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Shape metrics revisited

The application of shape-based geomeasures was the main result from the
March workshop, and it yielded a few conclusions with mixed success.

Whole image shape metrics were indistinguishable from L2 norm due
to field of view closure dominating metric.

Explicit selection of a region of interest yielded reasonable
registration, but with high sensitivity to length scale.

k-means segmentation proved to be too sensitive to noise and failed
to account for spatial correlations in data.

A few red herrings were identified such as boundary parameterization.

Sequence similarity sensitivity to starting position of boundary
parameterization.

Some of these were addressed post-report.

M. Sottile (LANL) Jets Status // Unclassified May 2006 4 / 40



university-logo

A better length scale and ROI

The work at the March workshop given in our March PPT report had
some warts. To summarize:

A poor length scale choice: inexperience on the part of some of the
participants led to geometric measures being computed at length
scales near the pixel size. The noise in the data was falsely attributed
to both bridging in the boundary, and sensitivity of the segmenter.
The ultimate cause of problems was the radius being on the order of
the discretization size.

ROI selection. Contrary to what we had instucted participants to do,
we found afterwards that the ROI included the field of view closure.
This dominated the metrics.

These issues were addressed and the following data was produced.
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A reminder: the analysis pipeline

GM(TP(PADDER(EXPCROP(K3(SMASK(K4(EXPIN),EXPIN))))))

GM(TP(PADDER(SIMCROP(K3(SMASK(K4(SIMIN),SIMIN))))))

K4=kmeans(4,20)

K3=kmeans(3,10)

TP=trigpoly(pixel_width,pixel_height,df,lowpasscutoff)

GM=geomeasures2(lengthscales)

SIMCROP=crop([85 137 50 208])

EXPCROP=crop([155 235 115 275])

PADDER=pad([2 2 2 2],1)

SMASK=segmask(2);

pixel_width=1 ; pixel_height=1 ; median_window=[5 8]

lowpasscutoff=0.15 ; lengthscales=[10 13 16 19 22 25]

smallscale=[5] ; mdrtype=1 ; df=[]
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Results with refined ROI and a sane length scale

M. Sottile (LANL) Jets Status // Unclassified May 2006 8 / 40



university-logo

Discussion

Better match. Best gets 6ns at sim 59, 8ns at sim 82. Within +/- 200 ps
experiment time error bars. Sims vs 6ns on left, sims vs 8ns on right. Note
the large dynamic range - significantly better than the DTW results
reported in March with the bad length scale.

Length scale varied for each plot pair. Scales were 10, 13, 16, 19, 22, 25
pixels.

This work was run with the original simulation set. It has not been re-run
on the new data yet. Unfortunately, I didn’t make a plot to zoom in and
show that there is less noise than bad radius DTW. Signal to noise is
much better, and I can show it as soon as IDA starts to behave again.
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Better segmenters

k-means proved to be too sensitive to both noise and ambiguity along the
shape boundary. It didn’t take into account spatial correlations between
pixels.
Two replacement segmenters were implemented.

1 Fuzzy c-means: relax the constraint that pixels must be a member in
one and only one segment during iteration. Pixels are allowed to have
degrees of membership that are relaxed as iterations proceed.

2 Spatial fuzzy c-means: extend FCM to take into account spatial
correlations. Motivated by a paper from a recent brain imaging
journal. The original paper proposed an anisotropic spatial weighting
function based on a flat stencil. I extended it to be both isotropic and
to provide a weighted correlation based on distances.

FCM and sFCM provide much better segmentation, and sFCM allows for a
tunable smoothing to be included.
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Experimental jet data
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Shocktube early time
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Shocktube later time
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Wave collider 1
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Wave collider 2
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Flowers
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Vacation
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Smoothing before segmentation vs spatial segmentation

Increasing the sFCM spatial window size provides smoothing, but is NOT

equivalent to smoothing before k-means or FCM.
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Sequence similarity

Given a segmentation of the image into shape and background, we identify
boundary pixels and parameterize a curve representing the estimated shape
boundary. Geometric measures are computed in a sequence along the
boundary. Clearly where one starts is important when comparing images.

The original DTW algorithm assumed the start point was the “correct”
start point. This is not always true as the shapes evolve.

A circular DTW algorithm was implemented that has the same time and
space complexity (O(2n2) ∈ O(n2)), but is insensitive to where the
sequence starts. It finds the distance that is minimized for all possible
starting positions.
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Elastic sequence warping

DTW, being from speech processing, warps by removing data points to
build a better fit. If we wish to warp while preserving all data, other
methods must be employed. One can perform one dimensional elastic
warping as an alternative.

This is partially implemented. The problem with this algorithm is the time
required for the optimization loop to determine the warp coefficients.

dx =
modes∑

j=1

αj sin(2πj)

Unconstrained optimization is used to find the best set of αi ’s for the
warp. At the current time, this method is not computationally feasible,
but intelligent selection of parameters should help. (Hierarchical
refinement, better optimization algorithm)
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Whole image metrics

Segmentation and shape-based metrics worry me, because they require a
decision to be made on where the “shape” exists within the image. Given
the lack of sharp edges, there are many possible shapes depending on the
parameters given to the “shape finding” algorithms.

So we would like to avoid this, and try to compute metrics that do not
require shapes to be extracted.
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Why?

Say I derive a shape from an image and compute a metric based on it. It
is hard to say that that metric is measuring the distance between images –
it’s measuring the distance between structures that were derived from the
images. Not the images themselves.

For defensible metrics, we really should minimize the manipulations of the
original data or simulations to eliminate additional sources of error and
uncertainty.

Speaking of uncertainty. The deeper the processing pipeline, the more
complex it is to propagate error from data/simulation to a metric.
Reducing this depth is important.
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Work in progress

Currently, a few whole-image metrics are underway. At least one has
results that can be shown at the current time.

The inital step is to treat the image as a surface with heights based on
pixel intensity. From this, the gradient of the image can be computed at
each pixel.

This is computed with a simple square stencil that includes diagonal
neighbors.
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Example on experimental data

Original image ROI
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Gradient field
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Aside: Can we use the gradient estimate as a metric?

Without preprocessing the data, can we derive a metric from the gradient
estimate alone? An initial experiment was performed as follows.

Compute the gradient over the image.

Create a histogram of the magnitudes of the gradient vectors.

Normalize the histograms such that
∑bins

i=1 bin(i) = 1.0.

Compare the histograms via L2 and cDTW.

Results are inconclusive – we get numbers, but haven’t gone back to the
images to interpret them yet.
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Some plots
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Simulations versus 6ns image are red, versus 8ns image are blue. cDTW
used for histogram distance.
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Intensities weighted by local gradient magnitude

Intensity weighted by gradient
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There appears to be more structure evident here. Is this true, or a visual
trick due to the inverted color scale?
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Original image comparison, inverted color map
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Nope - this is the inverted color map for the original image. By weighting
pixels by the local gradient magnitude, we pull edge-like structures up
away from the flat regions nearby.
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Why is this interesting?

If we compute the gradient within an image that contains no clear edges,
we can at least use the gradient to mark pixels as being “edge like”. In
other words, a pixel with a zero gradient clearly is not at an edge, while a
pixel with a moderate magnitude gradient is “near” an edge.

By using the gradients as real numbers, we don’t have to threshold and
pick a value where we decide an edge “is”. That’s like segmentation, and
in that case, where we pick the edge value can cause fluctuations in the
subsequent metrics. This induces some undesirable sensitivities to image
processing parameters that are not what we wish to measure.
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Discussion

Clearly this isn’t the last step, but it is interesting to consider as a
preprocessing step. Instead of assigning pixels weights based on their place
in the global context (ie, segmentation), we are doing so locally based on
the local topology of the image.

If we’re looking for interfaces, shocks, or other edge-like structures, this
allows us to do so. Furthermore, we can not make a binary decision
(edge/not edge), but we can label pixels based on their likelihood (not in a
strictly probabalistic sense) of participating in an edge-like structure.
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Moving towards whole image geometric measures

One can also treat the image as a surface, and estimate it’s properties by
triangulation. Triangulation of the surface can estimate quantities such as
surface area and volume.

Consider this. We can easily compute the surface area of the image via
triangulation. At any pixel, we can consider a sphere of radius r . One can
compute the ratio of the area of the disk of radius r to the surface area of
the image that the sphere intersects. Similarly, one can treat the image as
a height field, and compute the ratio of the volume of a sphere centered at
a pixel and mean pixel value as height, versus the volume of the
intersected height field.
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First cut whole image geomeasure

2d geomeasure radius 7
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Discussion of 2d geomeasure

What was that picture? At each pixel, we plot:

Pixels in disc of radius r

Surface area of image covered by disc of radius r

What does this tell us?

Flat regions of image, this ratio is close to one.

Bumpy regions, this ratio is less than one.

Edges with high gradient region much less than one.

Wavy edges have ratio less than straight edges.

I believe this is the 3d “equivalent” (in spirit at least) of the shape
measure of circle circumference to contained arc length. In 3d we consider
spheres/ellipsoids, so instead of a 1d boundary, we get 2d surfaces and
discs.
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But wait...

That looks like a smoothing filter output, right? Wrong.

ROI smoothed with 2d gaussian radius 7
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This is approximately the same region of the image after applying a
Gaussian smoothing with a radius of 7 pixels, the same as the radius used
for the geomeasure computation.
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Comparing whole image geomeasures

How do we compare these whole image geomeasures? Not sure yet.
Warping is an option. So is basic L2, although that will likely suffer from
registration mismatches. L2 discussed in IS06 slides for shocktube data on
multiscale 1D geomeasures.

It’s really an open question as of now as to how to best compare these full
image geomeasures.
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Warping revisited

Tom and I spent some time at the SIAM Imaging Science conference this
May in Minneapolis talking to one of the experts in the field of image
warping and registration (Jan Modersitzki).
At one time, Tom and I worked on a DDMA project entitled “TSWarp”, in
which we explored the possibility of using image warping maps to compute
warp energies that can be used as distance metrics between images.

Curvature warping

Fluid warping

Elastic warping (the one I worked most on)
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Warping (2)

Issues arise.

We wish to avoid circular problems. We don’t want to do fluid
registration that relies on evolving a boundary that amounts to
essentially what is being simulated.

Conservation properties. Warping requires interpolation of an image
under a warp mapping in order to do a comparison of the warped
image to that which is being compared. Linear or other interpolation
methods do not obey conservation laws. Conservative remappers are
computationally nasty.

The data sets we are considering require warping operators to allow
shear flows and twisting that makes optimization loops both
computationally difficuly, and prone to getting stuck in local minima.
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Warping (3)

New methods based on particle warping that boil down to fluid warping
with some terms eliminated may have some promise.

At IS06, a student from U. Waterloo presented a paper on this. Currently
awaiting a draft or some code to try it out.

In the meantime, we are resurrecting our TSWarp algorithms that were
investigated under Jim Kamm’s LDRD and applied to the shocktube and
wavecollider data sets.

Why did they get shelved? Not appropriate for shocktube due to flow
characteristics. Furthermore, elastic warping on whole image has a
REALLY nasty optimization step.

Mass conserving interpolator desired also. This also proved to be a
computationally painful algorithm.
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Nuance formation

DDMA also formed a new working group that focuses on detecting data
nuances. Much of our work has focused on shape metrics, denoising,
warping, etc... The jets data is unique in that what we are looking for is
buried in the data - it’s not a large scale obvious difference.

Shape metrics do work – registration problems have shown that, as have
other data sets. Furthermore, a first glance at the shape data that comes
out of the four new simulations looks promising for shape comparisons.

Why are we looking outside the shape realm? We’re avoiding the “have
hammer, world is full of nails” syndrome. Sometimes you need a hacksaw
if you really can’t turn the problem into a nail.
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